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APPLICATION OF WAVELET ANALYSIS TO IDENTIFICATION

OF STRUCTURALLY INHOMOGENEOUS DEFORMABLE MATERIALS

UDC 517:621.777:669.2V. V. Zverev,1 A. G. Zalazinskii,2

V. I. Novozhonov,3 and A. P. Polyakov2

A wavelet-based experimental technique for studying the structure of material surfaces is pro-
posed. The basic theoretical concepts of the local-frequency and wavelet analyses are given.
Examples of the wavelet analysis of model images are considered. The structure of briquettes
obtained by compaction of titanium sponge is determined with the use of wavelet analysis.

It is of interest to study the dependence of the physicomechanical properties of strongly inhomoge-
neous deformable materials (composites, powdered materials, etc.) on their macro- and microstructures. In
this connection, one needs information on the integral characteristics of the structure to be studied such
as the spatial frequency of repetition of the elements (for example, grains, pores, or cracks), the statistical
characteristic of their distribution, the presence of scale invariance, etc. [1]. Below, we consider the basic
concepts of the technique developed by the authors to study experimentally the structure of a material with
the use of the wavelet analysis, which was evolved intensely in the last decade of the 20th century [2–8]. In our
opinion, this technique allows one to identify a deformable material, determine the periodicity of its micro-
and macrostructures, and estimate the dimensions of representative elementary volumes for determination
of the effective mechanical characteristics in solving problems of the mechanics of deformable structurally
inhomogeneous materials.

The wavelet-based methods enable one to calculate the local and integral characteristics of images
within the framework of a unified procedure of decompositon into wavelet spectra, determine the structure
of a strongly inhomogeneous volume, and study its local scale (scale-invariance) properties, since the wavelet
transform yields a two-dimensional scan of the one-dimensional signal to be investigated (the frequency and
coordinates are considered as independent variables). As a result, it is possible to analyze the properties of
the signal in the physical (space and time) and frequency spaces simultaneously [4]. The wavelet analysis can
also be used to study both time sequences and spatial distributions [7].

The existing mathematical methods of analyzing the local-frequency distributions are closely related
to the concepts of quantum mechanics which admit a quantum–classical correspondence. Indeed, in the
quantum theory of Hamiltonian systems, in addition to the coordinate and momentum representations, the
continuous (c-number) Weyl representation is widely used [9, 10], in which the statistical operator is replaced
by the Wigner function [11, 12] defined in the c-number coordinate-momentum (phase) space; this function
becomes a standard distribution function determined in statistical mechanics in the limiting case as ~ → 0.
Since the coordinate-momentum representation is determined by the Fourier transform (decomposition of the
functions into a continuous frequency spectrum), the mathematical apparatus of the Weyl representation can
be extended to a broad range of problems of spectral analysis.
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We give some relations used to replace the statistical operator ρ̂ =
∑
ij

wij |i〉〈j|
(

sp ρ̂ =
∑
i

wii = 1
)

by

the Wigner function [11, 12] (the standard Dirac notation is used). Introducing the coordinate and momentum
representations (one-dimensional model), we obtain

ρx(x, x′) ≡ 〈x|ρ̂|x′〉 =
∑
ij

wijϕi(x)ϕ∗j (x
′), ϕi(x) = 〈x|i〉,

ρp(p, p′) ≡ 〈p|ρ̂|p′〉 =
∑
ij

wijϕi(p)ϕ∗j (p
′) =

∞∫
−∞

∞∫
−∞

ρx(x, x′) exp
[
− i

~

(px− p′x′)
]
dx dx′.

The transformation from the matrix element of the statistical operator in the coordinate representation to the
Wigner function and the inverse transformation to coordinate and momentum representations are performed
according to the rules

fw(p, x) =

∞∫
−∞

ρx

(
x+

1
2
η, x− 1

2
η
)

exp
(
− i

~

pη
)
dη; (1)

ρx(x, x′) = (2π~)−1

∞∫
−∞

fw

(
p,

1
2

(x+ x′)
)

exp
[ i
~

p(x− x′)
]
dp; (2)

ρp(p, p′) =

∞∫
−∞

fw

(1
2

(p+ p′), x
)

exp
[
− i

~

x(p− p′)
]
dx. (3)

The properties of the Wigner and usual distribution functions are similar in many respects. Indeed, the
formulas for calculating the means of arbitrary functions that depend only on the coordinate or momentum
have the same form as those in the classical theory:

sp (ρ̂g(x̂)) =
∑
ij

wij〈i|g(x̂)|j〉 =

∞∫
−∞

∞∫
−∞

fw(x, p)g(x)
dp dx

2π~
,

sp (ρ̂g(p̂)) =
∑
ij

wij〈i|g(p̂)|j〉 =

∞∫
−∞

∞∫
−∞

fw(x, p)g(p)
dp dx

2π~
.

In the case where the statistical operator describes a “pure” quantum-mechanical state, formulas (1)–(3)
become

ρ(x, x′) = ϕ(x)ϕ∗(x′), fw(p, x) =

∞∫
−∞

ϕ
(
x+

1
2
η
)
ϕ∗
(
x− 1

2
η
)

exp
(
− i

~

pη
)
dη. (4)

The similar structure of the right sides in expressions (2) and (3) reflects the fact that the Weyl representation
is in an intermediate position between the coordinate and momentum representations. If the momentum and
coordinate values are completely uncertain in the coordinate and momentum representations, respectively,
the Weyl representation ensures a “compromise” and minimizes the uncertainty of each quantity to an extent
admitted by the uncertainty relation. If the spectral analysis of a sequence of data is performed by the Fourier
transform, transformations (1)–(3) allows one to consider the local-frequency characteristics of such sequences
(in particular, the nonstationary signals or spatial distributions obtained experimentally).

Following Walker [6] and Torresani [8], we consider the possible generalizations of the Weyl represen-
tation to the general problems of spectral analysis. For certainty, we assume that the initial functions depend
on time. Let the integral Fourier transform have the form
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f̂(ω) =

∞∫
−∞

f(t) exp (−iωt) dt, f(t) =
1

2π

∞∫
−∞

f̂(ω) exp (iωt) dω.

We assume that f(t) and g(t) are certain complex signals. By analogy with the Wigner function (4),
we introduce the functions

Rf,g(τ, ξ) =

∞∫
−∞

f
(
t+

1
2
τ
)
g∗
(
t− 1

2
τ
)

exp (−iξt) dt; (5)

Ef,g(b, ω) =

∞∫
−∞

f
(
b+

1
2
τ
)
g∗
(
b− 1

2
τ
)

exp (−iωτ) dτ. (6)

With allowance for the replacement b+ τ/2 = q, we rewrite the last expression in the form

Ef,g(b, ω) = 2

∞∫
−∞

f(q)g∗(2b− q) exp [−iω(q − b)] dq. (7)

Functions (5) and (6), which are called, in [18], the uncertainty cross function and the Wigner–Wille cross
function, respectively, are related through the symplectic Fourier transform:

Rf,g(τ, ξ) =
1

2π

∞∫
−∞

∞∫
−∞

Ef,g(b, ω) exp [−i(ξb− ωτ)] db dω,

Ef,g(b, ω) =
1

2π

∞∫
−∞

∞∫
−∞

Rf,g(τ, ξ) exp [i(ξb− ωτ)] dτ dξ.

To illustrate the application of the time–frequency analysis by means of the function (6), we consider
the problem of processing a radar signal in an idealized formulation. Let a “radar” send a short radio pulse
f(t) with a delta-shaped envelope and high-frequency filling with a frequency Ω. The reflected pulse g(t) has
a time lag, and the filling frequency changes by ω0 (due to the Doppler effect). Assuming that the reflected
signal is represented in the form g(t) = A exp [iω0(t− t0)]f(t− t0) (for simplicity, the shape of the envelope is
assumed to be the same), we calculate approximately the magnitude of the Wigner–Wille function

|Ef,g(b, ω)| ≈ k|A| |f̂(Ω)|2δ(2ω − 2Ω− ω0)δ(2b− t0). (8)

On the right side of expression (8), the delta-shaped functions are written in the form of delta functions and
the constant k depends on the shape of the envelope. Function (8) has a narrow peak for b ≈ t0/2 and
ω ≈ ω0/2. Thus, comparing the initial and returned signals, we find the time lag and the frequency shift, i.e.,
we perform the time–frequency analysis.

We now consider formula (7). When the function g(t) is fixed, expression (7) is a certain integral
transform on the set of functions f(t). We define a transformation called the continuous Gabor or “window”
Fourier transform [8]:

Gf (b, ω) = 〈f, gb,ω〉 ≡
∞∫
−∞

f(t)g∗b,ω(t) dt.

Here gb,ω(t) = exp [iω(t− b)]g(t− b) is the Gabor function. The function gb,ω is the product of the oscillating
exponent function and the “window” function g(t); as a “window” function, one can use, for example, the
Gaussian function or a function of the rectangular-pulse type. The inverse Gabor transform is given by

f(t) = (2π‖g‖2 )−1

∞∫
−∞

∞∫
−∞

Gf (b, ω)gb,ω(t) db dω, ‖g‖2 =

∞∫
−∞

db|g(b)|2.
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We show that the conversion formula of the Gabor transform allows one to take into account the slow variation
in the filling frequency in the range of change of the envelope pulse. Let f(t) = A(t) exp [iϕ(t)], where ϕ(t) =
ω(t)t and tω′(t)� ω(t) for all values of t at which the function of the envelope shape A(t) differs significantly
from zero (i.e., the frequency varies insignificantly within the boundaries of the window). In this case, we
have ϕ′(t) ≈ ω(t). Assuming that ϕ(t) ≈ ϕ(b) + ϕ′(b)(t− b), after certain manipulations we obtain

|Gf (b, ω)| = 〈f, gb,ω〉 ≈ |A(b)| |ĝ(ϕ′(b)− ω)|. (9)

It follows from expression (9) that one can find (with a certain error) the envelope shape |A(b)| by varying b;
fixing b and varying ω, one can also determine the local value of the frequency by localizing the maximum of
the Fourier transform of the “window” function: ωmax ≈ ϕ′(b) ≈ ω(b).

The “window” Fourier transform is an effective means of processing complex signals. One of its
shortcomings is that the function image depends on many variables. Even in the one-dimensional case, there
are three variables: the position of the middle of the window, its width, and the frequency of oscillations
filling the window; moreover, the last two variables cannot be chosen independently. The above-described
approach can be simplified if one fixes the number of oscillations that fill the window, for example, by keeping
a constant ratio of the window width to the period of oscillations. In this case, the number of variables reduces
to two, and the necessary variation in the window parameters is performed by scaling the window together
with its “filling.” This idea forms the basis of a new modification of time–frequency analysis which is called
the multiple-resolvent (wavelet) analysis.

We consider the wavelet function ψ(t). Its graph must look as a window filled with oscillations. We
construct the basis by performing the continuous scale transformations and translations of this function:

ψa,b(t) =
1√
|a|

ψ
( t− b

a

)
, a ∈ R, b ∈ R.

We determine the continuous wavelet transform of an arbitrary function f(t):

Wf (a, b) = 〈f, ψa,b〉 ≡
∞∫
−∞

f(t)ψ∗a,b(t) dt. (10)

The Fourier transform of the basis function is related to the Fourier transform of the wavelet by the relation
ψ̂a,b(ω) = (a/

√
|a|) exp (−iωb)ψ̂(aω). Using the Parseval equality 2π〈f, g〉 = 〈f̂ , ĝ〉, one can establish the

formulas for the inverse wavelet transform

f(x) =
1
cψ

∞∫
−∞

∞∫
−∞

Wf (a, b)ψa,b(x)
da db

a|a|
, Cψ =

∞∫
−∞

dξ

ξ
|ψ̂(ξ)|2.

We show that the wavelet transform allows one to take into account slow variation of the filling frequency
within the confines of the radio-pulse envelope. Let f(t) = A(t) exp [iϕ(t)] and ϕ(t) = ω(t)t and tω′(t)� ω(t)
for all the values of t within the confines of the pulse envelope. Then, |Wf (a, b)| ≈

√
|a| |A(b)| |ψ̂(aϕ′(b))|. We

assume that the Fourier transform of the wavelet function ψ̂(ω) reaches an extremum at the point ω0 6= 0 on
the frequency axis. Determining the extremum as a function of a (for b fixed), we find ϕ′(b) ≈ ω(b) by solving
the equation aϕ′(b) ≈ ω0. In logarithmic form, this equation becomes log2a ≈ log2ω0− log2ϕ

′(b). Thus, if the
frequency of the signal decreases by twofold, the extremum shifts along the log2a axis by unity.

It is convenient to choose the real wavelet functions in the form of derivatives of the Gaussian function:

ψ(t) = (−1)m+1 d
m

dtm
exp

(
− t2

2

)
(m > 1). (11)

Morlet introduced another type of wavelet function [3]: ψ(t) = exp(iω0t) exp(−t2/2). The wavelet transform
proposed by Morlet is similar to the window Fourier transform, since the wavelet function is a Gaussian
window filled by sinusoidal oscillations. For m = 2, function (11) is used most frequently and referred to as
the “Mexican hat” or “sombrero” wavelet. Another examples of the frequently used wavelet functions are
given in [4].
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Fig. 1. Scale-invariant raster (a) and its waveletogram (b).

Let us apply the wavelet analysis to a series of artificially obtained images. We construct a raster with
the scale invariance (self-similarity) in the form of a set of black bands (Fig. 1a) by means of the algorithm
for constructing the Cantor set. We divide the black rectangle by segments parallel to the lateral sides into
three equal parts and remove the central part. We repeat this procedure for each of the other parts, etc. As
a function f(t), we use the one-dimensional distribution obtained by scanning the raster along the horizontal
line from t = 0 (the left boundary of the image) to t = 1 (the right boundary of the image). The value of
the function is proportional to the degree of blackening of the image. In the waveletogram shown in Fig. 1b
(“sombrero” wavelet), the corresponding wavelet-spectral distribution is plotted in the coordinate system
{b, log2(1/a)} (b is the translation parameter and a is the scaling parameter): the intensity of blackening is
proportional to the squared magnitude of the function (10). The inhomogeneity of blackening of the lower,
middle, and upper parts of the image in Fig. 1b shows that the initial image (Fig. 1a) contains structural
elements of small, medium, and large scales, respectively. In other words, the appearance of the lower, middle,
and upper parts of the waveletogram shows the presence of small-, medium-, and large-scale structures. The
specific feature of the waveletogram shown in Fig. 1b is that the structural elements of the same type (light
“arches” with a dark middle part) appear periodically with a certain noninteger step along the vertical line,
which shows that the raster possesses self-similarity. The step size, which can be determined by measuring,
for example, the vertical distances between the horizontal levels at which the tops of the “arches” are located,
is related to the fractal dimension of the corresponding fractal structure. In our model example (the Cantor
set), the step size is equal to log23.

We consider the two-dimensional images of idealized piecewise-regular structures that are the models
of the images of real objects. The procedure of wavelet-spectral analysis allows one to determine the specific
features of their structures.

Figure 2a shows a structure that consists of black and white squares arranged in a chessboard fashion.
The linear dimensions of the squares in the right part of the structure are four times smaller that those
in the left part. The one-dimensional distribution f(t) is obtained by scanning along the inclined segment
shown in Fig. 2a from t = 0 (the left end of the segment) to t = 1 (the right end of the segment). In the
waveletogram plotted with the use of a “sombrero” wavelet (Fig. 2b), the boundaries of the horizontal bands
which consist of alternating dark and light vertical columns are determined by the conditions 4 < log2(1/a) < 6
and 6 < log2(1/a) < 8 for the left and right parts of the image, respectively. The presence of the horizontal
band (or several bands at different levels) is indicative of the periodic repetition of structural elements with a
certain characteristic period (or several periods). In this case, the band in the left part of the waveletogram is
two units lower than that ii the right part, which shows that the structure shown in the right part of Fig. 2a
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Fig. 2. Regular structure with a ratio of element sizes of 1:4 (a) and its waveletogram (b).
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Fig. 3. Essentially two-dimensional model structure (a) and its waveletogram (b).

can be obtained from the structure shown in the left part of Fig. 2a by a proportional, fourfold contraction
(22 = 4).

The essentially two-dimensional structure shown in Fig. 3a comprises a series of domains filled with
model textures. Interpretation of the waveletogram plotted with the use of scanning results obtained along
the inclined segment from left to right (the Morlet wavelet was used) (Fig. 3b) reveals the following specific
features of the image structure:

— The structure is periodic for 0 < b < 0.19 [horizontal band 2 < log2(1/a) < 3.3] and 0.52 < b < 0.73
[horizontal band 3 < log2(1/a) < 4.1];

— The structure is doubly periodic for 0.19 < b < 0.41 [horizontal bands 4 < log2(1/a) < 4.7 and
6 < log2(1/a) < 6.7; the periods differ by approximately a factor of 4] and 0.73 < b < 1 [horizontal bands
4.4 < log2(1/a) < 5.3 and 6.4 < log2(1/a) < 7.3];

— In the region 0.5 < b < 1, there is high-frequency noise (the inhomogeneity of the image in Fig. 3b
for 7.5 < log2(1/a) < 9).
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Fig. 4. The structure of titanium sponge pressed at 400 MPa (a) and its waveletogram (b).
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Fig. 5. The structure of titanium sponge pressed at 800 MPa (a) and its waveletogram (b).

Let us use the wavelet analysis to determine the structure of briquettes fabricated by cool compaction
of titanium sponge in a closed mould at 400 (Fig. 4a) and 800 MPa (Fig. 5a). Results of mathematical and
real-scale modeling and results of investigation of the structure and mechanical properties of semifinished
items obtained by briquetting titanium sponge and subsequent extrusion of bars are given in [13, 14]. These
investigations were performed with allowance for the fact that semifinished items and articles from technically
pure titanium, whose chemical composition is identical to that of the sponge, can be obtained directly from
the titanium sponge by means of the ingot-free technology, which is energy-, material-, and labor-saving.

Figures 4b and 5b show results of the wavelet transforms (“sombrero” wavelet) of the signals along the
chosen directions (white line of length 200 and 290 µm in Figs. 4a and 5a, respectively). It is noteworthy that
the wavelet spectrum in Fig. 4b shows that the structure of the titanium briquette is periodic with a step of
55 µm at the level of five units and the wavelet Fig. 5b shows that the structure of the titanium briquette
is periodic with a step of 115 µm at the level of four units. One can infer that the more porous briquette
(Fig. 4a) possesses a periodic structure at the level of five units (medium-scale level), the distance between
the structural formations being of the order of 55 µm, whereas the more dense briquette (Fig. 5a) possesses
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a periodic structure characterized by a step size of 115 µm at the level of four units (small-scale level). In
constructing constitutive relations for structurally inhomogeneous materials (hardening curves or equations of
state) at the level of mesomechanics and in determining the effective characteristics [1, 15], it is expedient to
take into account the scales of structural periodic formations.

Thus, the wavelet analysis can be used to identify the structurally inhomogeneous deformable bodies. In
particular, this analysis allows one to reveal whether the superficially chaotic structures possess the periodicity
and determine the scale levels of representative volumes.
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